Schur convexity properties for the elliptic Neuman mean with applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Schur Convexity for the Generalized Muirhead Mean

For x,y > 0 , a,b ∈ R with a+ b = 0 , the generalized Muirhead mean is defined by M(a,b;x,y) = ( xayb+xbya 2 ) 1 a+b . In this paper, we prove that M(a,b;x,y) is Schur convex with respect to (x,y)∈ (0,∞)×(0,∞) if and only if (a,b)∈ {(a,b)∈R2 : (a−b)2 a+b > 0 & ab 0} and Schur concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈ {(a,b)∈R+ : (a−b)2 a+b & (a,b) = (0,0)}∪{(a,b) ∈ R2 : ...

متن کامل

The Schur-convexity of the mean of a convex function

The Schur-convexity at the upper and lower limits of the integral for the mean of a convex function is researched. As applications, a form with a parameter of Stolarsky’s mean is obtained and a relevant double inequality that is an extension of a known inequality is established. © 2009 Elsevier Ltd. All rights reserved.

متن کامل

Schur-convexity, Schur-geometric and Schur-harmonic convexity for a composite function of complete symmetric function

In this paper, using the properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, we provide much simpler proofs of the Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for a composite function of the complete symmetric function.

متن کامل

Necessary and Sufficient Conditions for the Schur Harmonic Convexity or Concavity of the Extended Mean Values

In this paper, we prove that the extended values E(r, s;x, y) are Schur harmonic convex (or concave, respectively) with respect to (x, y) ∈ (0,∞) × (0,∞) if and only if (r, s) ∈ {(r, s) : s ≥ −1, s ≥ r, s+ r + 3 ≥ 0} ∪ {(r, s) : r ≥ −1, r ≥ s, s+r+3 ≥ 0} (or {(r, s) : s ≤ −1, r ≤ −1, s+r+3 ≤ 0}, respectively).

متن کامل

On Certain Inequalities for Neuman-Sándor Mean

and Applied Analysis 3 (a, b), and let g󸀠(x) ̸ = 0 on (a, b). If f󸀠(x)/g󸀠(x) is increasing (decreasing) on (a, b), then so are f (x) − f (a) g (x) − g (a) , f (x) − f (b) g (x) − g (b) . (11) If f󸀠(x)/g󸀠(x) is strictly monotone, then the monotonicity in the conclusion is also strict. Lemma 6 (see [11, Lemma 1.1]). Suppose that the power series f(x) = ∑ ∞ n=0 a n x n and g(x) = ∑∞ n=0 b n x n hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2015

ISSN: 1331-4343

DOI: 10.7153/mia-18-13